SDLS043 - DECEMBER 1983 - REVISED MARCH 1988

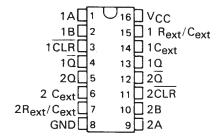
- D-C Triggered from Active-High or Active-Low Gated Logic Inputs
- Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- '122 and 'LS122 Have Internal Timing Resistors

description

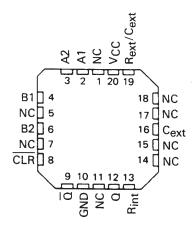
These d-c triggered multivibrators feature output pulse-duration control by three methods. The basic pulse time is programmed by selection of external resistance and capacitance values (see typical application data). The '122 and 'LS122 have internal timing resistors that allow the circuits to be used with only an external capacitor, if so desired. Once triggered, the basic pulse duration may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear. Figure 1 illustrates pulse control by retriggering and early clear.

The 'LS122 and 'LS123 are provided enough Schmitt hysteresis to ensure jitter-free triggering from the B input with transition rates as slow as 0.1 millivolt per nanosecond.

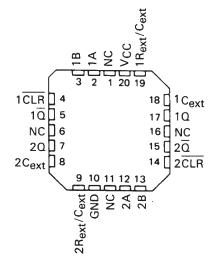
The $R_{\mbox{\scriptsize int}}$ in nominall 10 $k\Omega$ for '122 and 'LS122.


SN54122, SN54LS122...J OR W PACKAGE SN74122...N PACKAGE SN74LS122...D OR N PACKAGE (TOP VIEW) (SEE NOTES 1 THRU 4)

A1 🗆	1	U 14		Vcc
A2 🗀	2	13		R _{ext} /C _{ext}
B1 □	3	12	Þ	NC
B2 ☐	4	11		C _{ext}
CLR	5	10		NC
ō۲	6	9	þ	Rint
GND□	7	8		Q

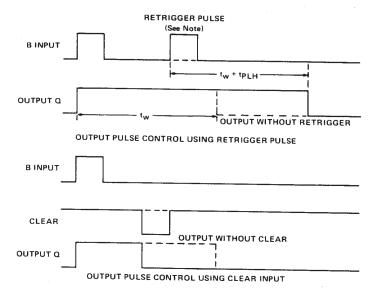

NOTES: 1. An external timing capacitor may be connected between C_{ext} and Re_{xt}/C_{ext} (positive).

- To use the internal timing resistor of '122 or 'LS122, connect R_{int} to V_{CC}.
- For improved pulse duration accuracy and repeatability, connect an external resistor between R_{ext}/Ce_{xt} and V_{CC} with R_{int} open-circuited.
- To obtain variable pulse durations, connect an external variable resistance between R_{int} or R_{ext}/C_{ext} and VCC.


SN54123, SN54130, SN54LS123...J OR W PACKAGE SN74123, SN74130...N PACKAGE SN74LS123...D OR N PACKAGE (TOP VIEW) (SEE NOTES 1 THRU 4)

SN54LS122 . . . FK PACKAGE (TOP VIEW) (SEE NOTES 1 THRU 4)

SN54LS123 . . . FK PACKAGE (TOP VIEW) (SEE NOTES 1 THRU 4)


NC - No internal connection

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SDLS043 - DECEMBER 1983 - REVISED MARCH 1988

description (continued)

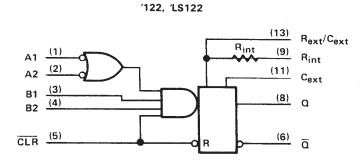
NOTE: Retrigger pulses starting before 0.22 C_{ext} (in picofrads) nanoseconds after the initial trigger pulse will be ignored and the output duration will remain unchanged.

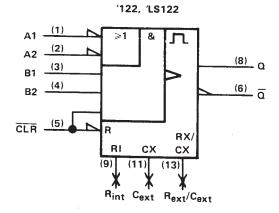
FIGURE 1-TYPICAL INPUT/OUTPUT PULSES

'122, 'L\$122 **FUNCTION TABLE**

	INP	JTS			OUT	UTS
CLEAR	Α1	A2	В1	B2	Q	ā
L	Х	X	Х	Х	L	Н
×	н	Н	Х	×	L†	нŤ
×	Х	X	L	Х	L†	н†
×	Х	Х	Х	L	L†	нŤ
н	L	Х	1	Н	Λ	U
н	L	Χ	Н	1	Л	IJ
н	Х	L	↑	Н	7.	v
н	Х	L	Н	†	Л	U
н	Н	1	Н	Н	V	IJ
н	1	\downarrow	Н	н	V	J.
н	1	Н	Н	н	Л	u
1	L	X	Н	н	7	U
_ †	×	L	Н	н	7	v

'123, '130, 'LS123 **FUNCTION TABLE**

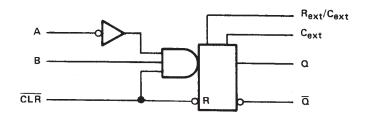

INPL	JTS		оит	PUTS
CLEAR	Α	В	α	ā
L	Х	X	L	Н
×	Н	X	L†	н†
Х	х	L	L†	нŤ
Н	L	†	Л	U
Н	ţ	Н	Л	U
1	L	Н	7	v

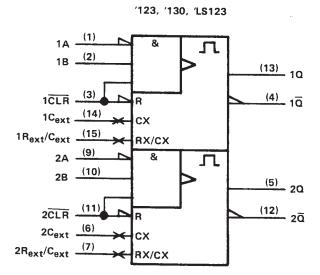

See explanation of function tables on page

† These lines of the functional tables assume that the indicated steady-state conditons at the A and B inputs have been set up long enough to complete any pulse started before the set up.

logic diagram (positive logic)

logic symbol†

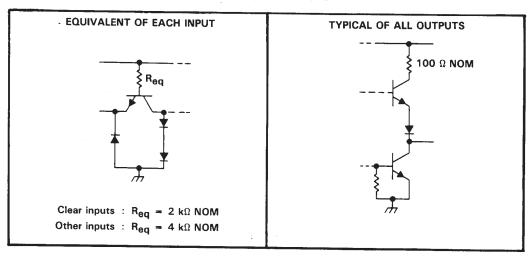



 $R_{\mbox{\scriptsize int}}$ is nominally 10 $k\Omega$ for '122 and 'LS122

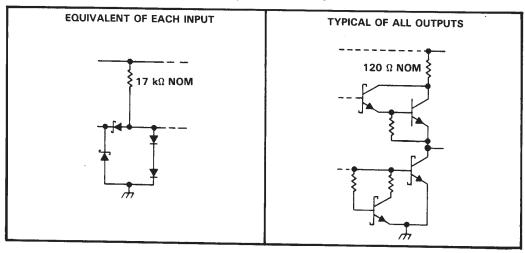
logic diagram (positive logic) (each multivibrator)

'123, '130, 'L\$123

logic symbol†


Pin numbers shown are for D, J, N, and W packages.

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


SDLS043 - DECEMBER 1983 - REVISED MARCH 1988

schematics of inputs and outputs

'122, '123, '130 CIRCUITS

'LS122, 'LS123 CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 1/
Input voltage: '122, '123, '130	/ V
7.5122 (1.5122)	5 V
'LS122, 'LS123	7 V
Operating free-air temperature range: SN54'55°C to 125	: 00
SN74'	, ,
Storage temperature 0°C to 70)°C
Storage temperature range65°C to 150)°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54'			SN74'		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			800	μА
Low-level output current, IOL			16			16	mA
Pulse duration, t _W	40			40			ns
External timing resistance, R _{ext}	5		25	5		50	kΩ
External capacitance, C _{ext}		restrict			restrict		1,72
Wiring capacitance at R _{ext} /C _{ext} terminal			50	140	710311101	50	
Operating free-air temperature, TA	-55		125	0		70	pF °C

electrical characteristics over recommended free-air operating temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS†		122			123, 113	30	
			120100	- TONG	MIN	TYP#	MAX	MIN	TYP±	MAX	UNIT
VIH	High-level input voltage				2	· · · ·		2			V
VIL	Low-level input voltage						0.8			0.8	l v
VIK	Input clamp voltage		VCC = MIN,	I _I = -12 mA			-1.5			-1.5	V
Vон	High-level output voltage		V _{CC} = MIN, See Note 5	$I_{OH} = -800 \mu\text{A},$	2.4	3.4	1.5	2.4	3.4	-1.5	V
VoL	Low-level output voltage		V _{CC} = MIN, See Note 5	IOL = 16 mA,		0.2	0.4		0.2	0.4	V
11	Input current at maximum i	nput voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
Ιн	High-level input current	Data inputs	V _{CC} = MAX,	V 2 4 V			40	_		40	1117
		Clear input	VCC - WAX,	V - 2,4 V			80			80	μΑ
HE	Low-level input current	Data inputs	V _{CC} = MAX,	V ₁ = 0.4.V			-1.6			-1.6	
		Clear input	VCC WAX,	V - 0.4 V			-3.2			-3.2	mA
los	Short-circuit output current	3	VCC = MAX,	See Note 5	-10		-40	-10		-40	mΑ
Icc	Supply current (quiescent o	r triggered)	V _{CC} = MAX,	See Notes 6 and 7		23	36		46	66	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 5. Ground C_{ext} to measure V_{OH} at Q, V_{OL} at \overline{Q} , or I_{OS} at Q. C_{ext} is open to measure V_{OH} at \overline{Q} , V_{OL} at Q, or I_{OS} at \overline{Q} .

switching characteristics, VCC = 5 V, TA = 25°C, see note 8

DADAMETTO #	FROM	то					′122, ′130				
PARAMETER¶	(INPUT)	(OUTPUT)	TEST CON	MIN	TYP	MAX	MIN	TYP	MAX	רואט	
^t PLH	A	Q				22	33		22	33	
	В			$R_{\text{ext}} = 5 \text{ k}\Omega$, $R_{\text{L}} = 400 \Omega$		19	28		19	28	ns
^t PHL	A	₫	$C_{ext} = 0$,			30	40		30	40	
	В		C ₁ = 15 pF,			27	36		27	36	ns
t _{PHL}	Clear	<u> </u>	· · · · · · · · · · · · · · · · · · ·			18	27		18	27	
tPLH						30	40		30	40	ns
t _{WQ} (min)	A or B	Q				45	65		45	76	ns
^t wQ	A or B	a	$C_{ext} = 1000 pF,$ $C_{L} = 15 pF,$	$R_{ext} = 10 \text{ k}\Omega$, $R_1 = 400 \Omega$	3.08	3.42	3.76	2.76	3,03	3.37	μs

TtpLH = propagation delay time, low-to-high-level output

NOTE 8: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§] Not more than one output should be shorted at a time.

^{6.} Quiescent ICC is measured (after clearing) with 4.5 V applied to all clear and A inputs, B inputs grounded, all outputs open and R_{ext} = 25 k Ω . R_{int} of '122 is open.

^{7.} ICC is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, $C_{ext} = 0.02 \,\mu\text{F}$, and $R_{ext} = 25 \,\text{k}\Omega$. R_{int} of '122 is open.

tpHL = propagation delay time, high-to-low-level output

 t_{WQ} = duration of pulse at output Q.

SN54LS122, SN54LS123, SN74LS122, SN74LS123 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

SDLS043 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

		SN54LS'			SN74LS	3'	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Pulse duration, t _W	40			40			ns
External timing resistance, R _{ext}	5		180	5		260	kΩ
External capacitance, C _{ext}	No	No restriction No restriction					
Wiring capacitance at R _{ext} /C _{ext} terminal			50			50	pF
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEC	T CONDITIONS†			SN54LS	•		SN74LS	,	
	FARAMETER	1 53	T CONDITIONS,		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
Vон	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	$V_{1H} = 2 V$, $I_{OH} = -400 \mu A$		2.5	3.5		2.7	3.5		V
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V,	I _{OL} = 4 mA		0.25	0.4		0.25 0.35	0.4	٧
l ₁	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
Iн	High-level input current	VCC = MAX,	V ₁ = 2.7 V				20			20	μΑ
IL	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX			20		-100	-20		-100	mA
lcc	Supply current (quiescent or triggered)	V _{CC} = MAX,	See Note 13	'LS122 'LS123		6 12	11 20		6 12	11 20	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 12. To measure VOH at Q, VOL at Q, or IOS at Q, ground Rext/Cext, apply 2 V to B and clear, and pulse A from 2 V to 0 V.

switching characteristics, VCC = 5 V, TA = 25°C (see note 8)

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	TYP	MAX	UNIT	
tout	tpi H Q			23	33			
^t PLH	В	u u				23	44	ns
tPHL	Α	۵	C -0	D - 5 1:0		32	45	
PHL	В	_ ~	C _{ext} = 0, C _L = 15 pF,	$R_{ext} = 5 k\Omega$, $R_L = 2 k\Omega$		34	56	ns
tPHL.	Clear	Q				20	27	
^t PLH	Cieal	ā				28	45	ns
t _{wQ} (min)	A or B	Q				116	200	ns
twQ	A or B	Q	C _{ext} = 1000 pF, C _L = 15 pF,	$R_{ext} = 10 k\Omega$, $R_L = 2 k\Omega$	4	4.5	5	μs

TtpLH = propagation delay time, low-to-high-level output

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

^{13.} With all outputs open and 4.5 V applied to all data and clear inputs. ICC is measured after a momentary ground, then 4.5 V, is applied to A or B inputs.

tpHL = propagation delay time, high-to-low-level output

 t_{WQ} = duration of pulse at output Q.

NOTE 8: Load circuits and voltage waveforms are shown in Section 1.

TYPICAL APPLICATION DATA FOR '122, '123, '130

For pulse durations when $C_{ext} \leq 1000$ pF, see Figure 4.

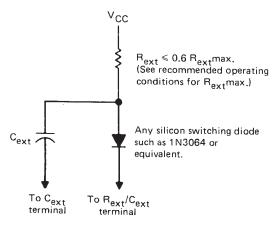
The output pulse duration is primarily a function of the external capacitor and resistor. For $C_{ext} > 1000 \ pF$, the output pulse duration (t_W) is defined as:

$$t_W = K \cdot R_T \cdot C_{ext} \left(1 + \frac{0.7}{R_T} \right)$$

where

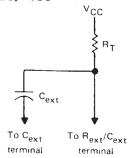
K is 0.32 for '122, 0.28 for '123 and '130

 $R_{\mbox{\scriptsize T}}$ is in $k\Omega$ (internal or external timing resistance.)

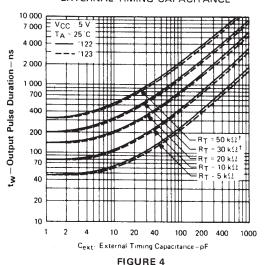

Cext is in pF

tw is in ns

To prevent reverse voltage across C_{ext} , it is recommended that the method shown in Figure 2 be employed when using electrolytic capacitors and in applications utilizing the clear function. In all applications using the diode, the pulse duration is:


$$t_{W} = K_{D} \cdot R_{T} \cdot C_{ext} \left(1 + \frac{0.7}{R_{T}} \right)$$

Kp is 0.28 for '122, 0.25 for '123 and '130


TIMING COMPONENT CONNECTIONS WHEN $C_{ext} \geq 1000 \; \text{pF AND CLEAR IS USED}$ FIGURE 2

Applications requiring more precise pulse durations (up to 28 seconds) and not requiring the clear feature can best be satisfied with the '121.

TIMING COMPONENT CONNECTIONS FIGURE 3

TYPICAL OUTPUT PULSE DURATION vs
EXTERNAL TIMING CAPACITANCE

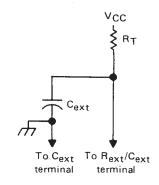
[†]These values of resistance exceed the maximum recommended for use over the full temperature range of the SN54' circuits.

SDLS043 - DECEMBER 1983 - REVISED MARCH 1988

TYPICAL APPLICATION DATA FOR 'LS122, 'LS123

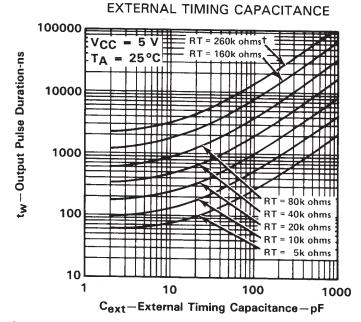
The basic output pulse duration is essentially determined by the values of external capacitance and timing resistance. For pulse durations when Cext≤1000 pF, use Figure 6, or use Figure 7 where the pulse duration may be defined as:

$$t_W = K \cdot R_T \cdot C_{ext}$$


When $C_{ext} \ge 1 \mu F$, the output pulse width is defined

$$t_W = 0.33 \cdot R_T \cdot C_{ext}$$

For the above two equations, as applicable;


K is multiplier factor, see Figure 7 $R_{\mbox{\scriptsize T}}$ is in $k\Omega$ (internal or external timing resistance) Cext is in pF tw is in ns

For maximum noise immunity, system ground should be applied to the Cext node, even though the Cext node is already tied to the ground lead internally. Due to the timing scheme used by the 'LS122 and 'LS123. a switching diode is not required to prevent reverse biasing when using electolytic capacitors.

TIMING COMPONENT CONNECTIONS FIGURE 5

'LS122, 'LS123 TYPICAL OUTPUT PULSE DURATION

[†]This value of resistance exceeds the maximum recommended for use over the full temperature range of the SN54LS circuits.

FIGURE 6

TYPICAL APPLICATION DATA FOR 'LS122, 'LS123†

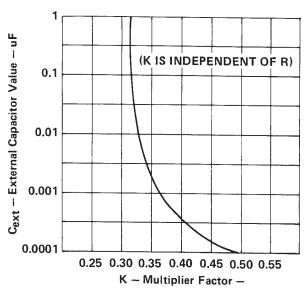
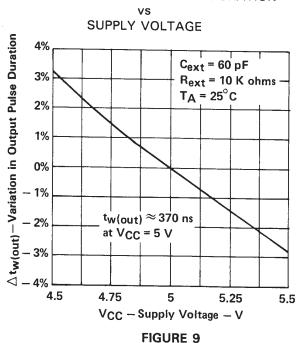



FIGURE 7

VARIATION IN OUTPUT PULSE DURATION

DISTRIBUTION OF UNITS vs OUTPUT PULSE DURATION

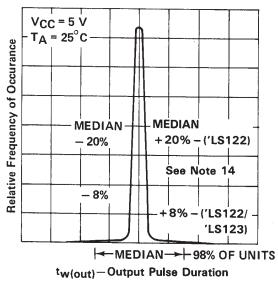


FIGURE 8

VARIATION IN OUTPUT PULSE DURATION

vs FREE-AIR TEMPERATURE

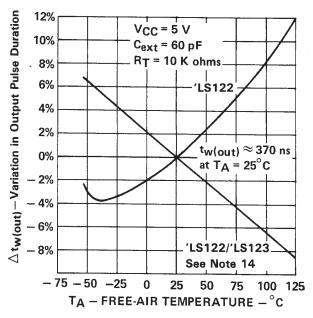


FIGURE 10

NOTE 14: For the 'LS122, the internal timing resistor, R_{int} was used. For the 'LS122/123, an external timing resistor was used for R_T.

†Data for temperatures below 0°C and above 70°C and for suply voltages below 4.75 V and above 5.25 V are applicable for SN54LS122 and SN54LS123 only.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Audio Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
5962-7603901VEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
5962-7603901VFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
7603901EA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
7603901FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
JM38510/01203BEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/31401B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
JM38510/31401BEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/31401BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
SN54122J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN54123J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SN54LS123J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SN74122N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74123N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74123N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74123NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS122D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS122DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS122DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS122DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS122DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS122DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS122N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS122N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS122NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS122NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS122NSRE4	ACTIVE	so	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS122NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS123D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS123DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS123DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS123DR	ACTIVE	SOIC	D	16	2500	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM
i.								

.com 9-Oct-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						no Sb/Br)		
SN74LS123DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS123DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS123J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN74LS123N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS123N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS123NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS123NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS123NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54122J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ54123J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54123W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
SNJ54LS123FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LS123J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54LS123W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

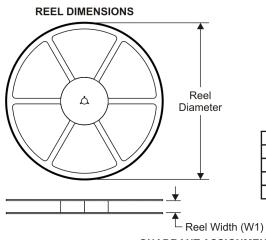
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

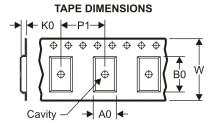
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

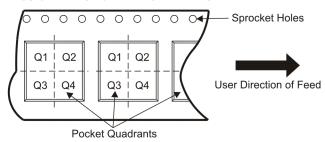
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

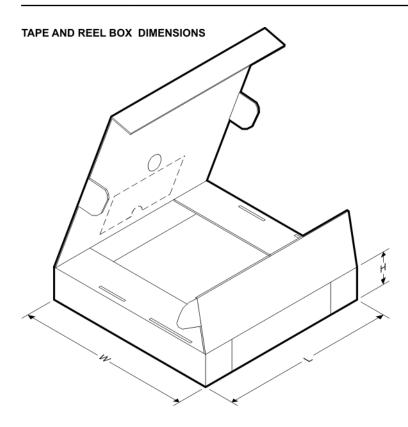

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

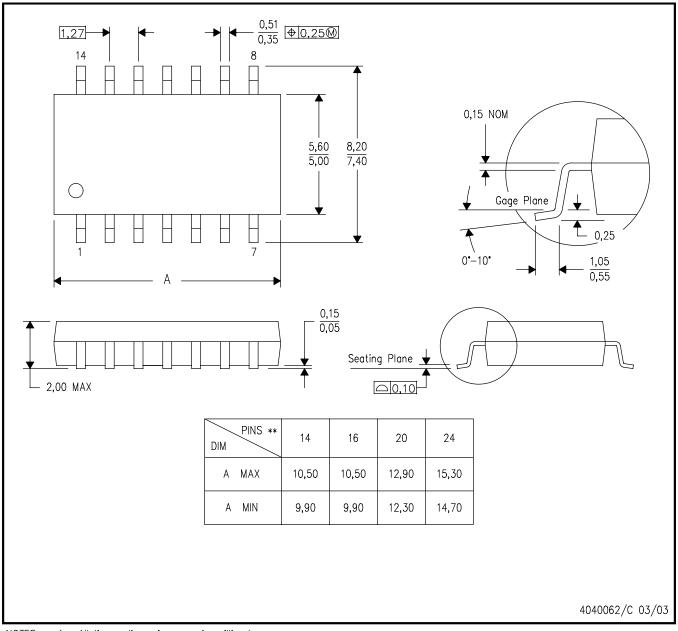
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS122DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS122NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS123DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS123NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

*All dimensions are nominal

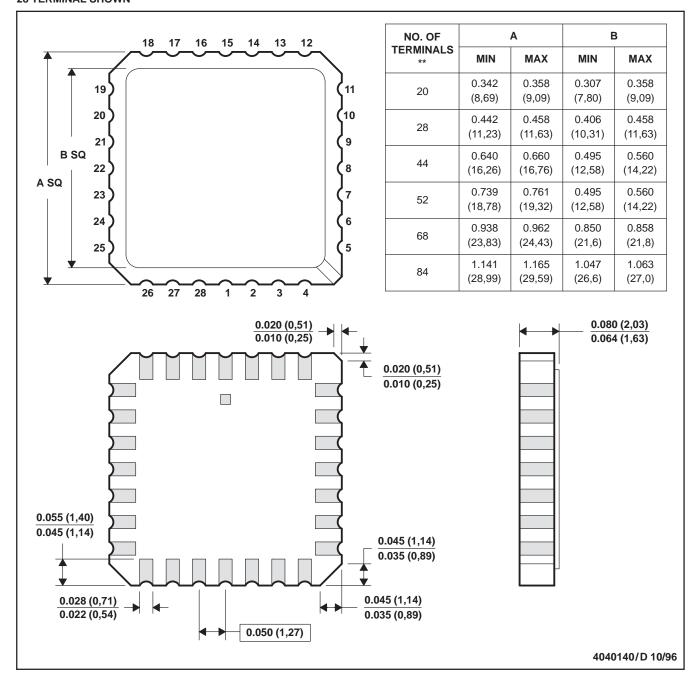

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS122DR	SOIC	D	14	2500	346.0	346.0	33.0
SN74LS122NSR	SO	NS	14	2000	346.0	346.0	33.0
SN74LS123DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS123NSR	SO	NS	16	2000	346.0	346.0	33.0

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

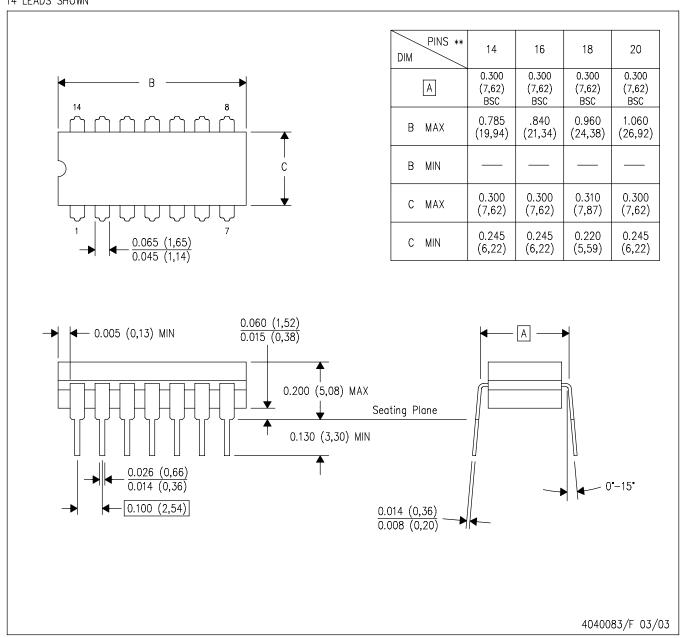
PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

FK (S-CQCC-N**)

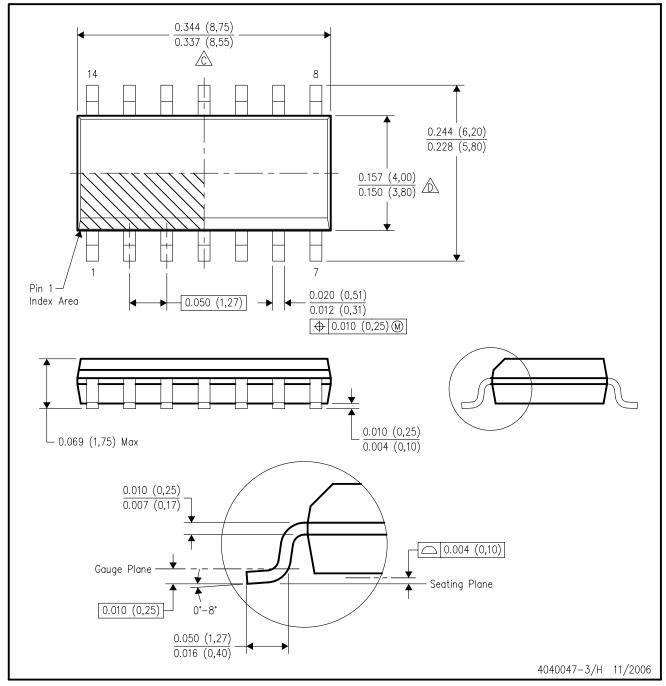
28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER



NOTES: A. All linear dimensions are in inches (millimeters).

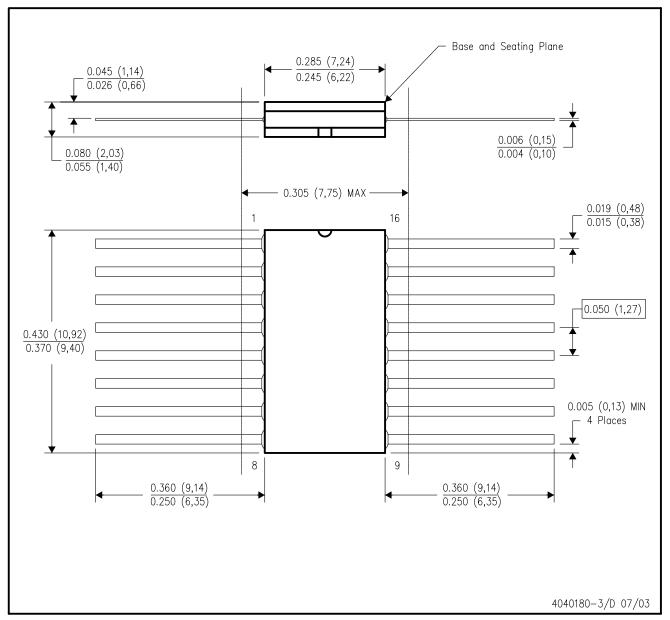
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

D (R-PDSO-G14)

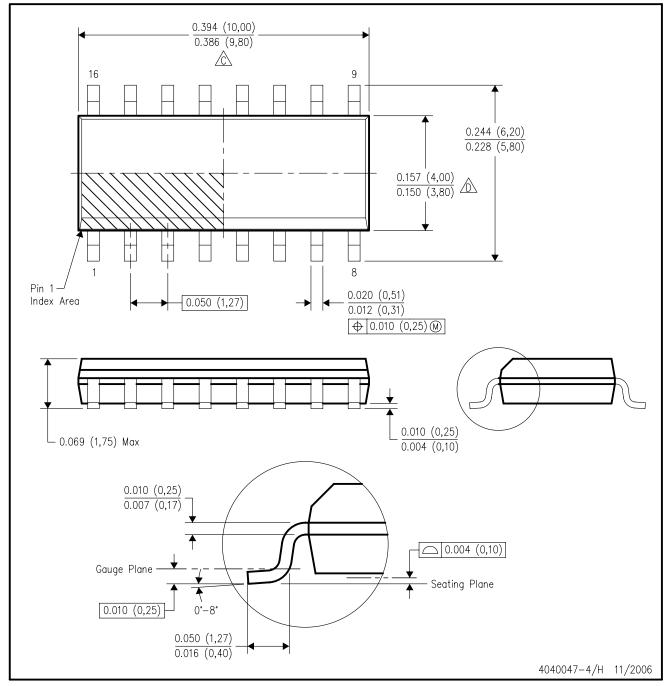
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AB.

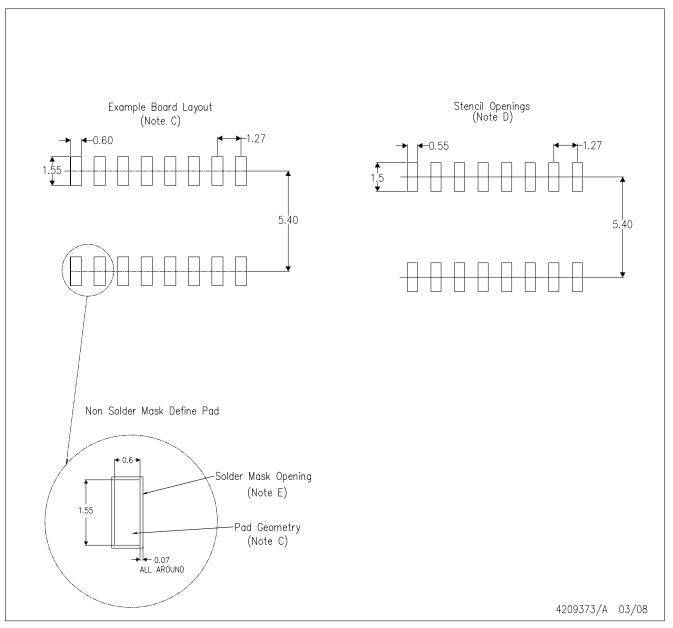
W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

D (R-PDSO-G16)


PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

D(R-PDSO-G16)

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated